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The dipole-shaped electromagnetic form factors of the proton may imply an 
exponential radial dependence of the wave function describing the charged 
constituents of the proton. The hypercentral potential required by the three-body 
Dirac equation to produce such an exponential radial wave function for three 
bound quarks is found to have a linear confining potential plus an attractive 
Coulombic central diagonal part. The configuration assumed for the quark 
constituents is the (1/2§ 3 positive parity configuration, coupled to the spin of 
the proton. Assuming equal-mass Dirac quarks with no anomalous magnetic 
moments, we find the largest magnetic moment for this wave function to be 
2.763 nuclear magnetons, close to, but less than the experimental value of 2.793. 
The hypercentral potential is mostly the sum of three quark-quark potentials, 
but a small three-body potential is required. 

1. I N T R O D U C T I O N  

The  proton stability, the nondiscovery  of  free quarks,  and considerat ions 
o f  s implici ty  have led to harmonic  oscil lator interactions and Gauss ian- type  
wave  functions in numerous  calculat ions (Feynman  et  al. ,  1971; Capst ick 
and Isgur, 1986; Fleck et  al . ,  1988; Gutsche  et  al . ,  1994; Grach  and Narodet-  
skii, 1994; Fi l ippov et  al . ,  1994). The  fo rm factor, which is the m o m e n t u m  
Fourier  t ransform, o f  such a Gauss ian  wave  function is also a Gauss ian  versus 
q2. However ,  the e lec t romagnet ic  fo rm factors can be well  fit (West, 1975) 
by a dipole form factor, suggest ing an exponential  shape for the charge 
distribution in the proton, in sharp contrast  to a Gauss ian  fo rm factor. The  
dipole fo rm factor is 

Dipole  = 1./(1. + q2/0.71)2 (1) 

where  q2 is the squared m o m e n t u m  transfer to the proton in (GeV/c)  2. This  
fo rm factor  very nearly descr ibes  all the m o m e n t u m  dependences  of  both 
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GM and GE, the current and charge form factors (Halzen and Martin, 1984) 
of the proton. 

In this work, the proton is assumed to be composed of three identical, 
nearly massless quarks. The quarks are considered as elementary constituents 
without any anomalous magnetic moment nor any finite size. The three-body 
Dirac equation, including the lower components to the quark wave functions, 
provides a rest-frame wave function determined by relativistic dynamics. 

Barut and Komy (1985) have shown how to get a Poincar6 invariant n- 
body equation with a single time where the relative coordinates depend only 
on three vectors in the rest frame of the cluster. They introduce derivatives 
with respect to the composite fields of two (or n) fermions and take derivatives 
of the action with respect to these fields using retarded Green's functions. 
This results in a covariant two (or n)-body one-time equation with relativistic 
potentials. The time is the time of the center of mass. In a three-body system 
there is no dependence on either relative time. When the two (or n)-body 
composite particle wave function normalization is defined on a surface per- 
pendicular to a unit four-vector (Barut and Strobel, 1986), which is (1, 0, 0, 0) 
in the overall center-of-momentum frame, then there is no relative time in 
the composite particle Hamiltonian in this frame. This unit normal vector, 
perpendicular to the surface over which the normalization is determined, can 
be identified with the frame-dependent velocity vector of the system (Moreno 
and Zentella, 1989), which is also (1, 0, 0, 0) in the center-of-momentum 
frame. This allows the rest-frame wave function to be expressed covariantly 
in terms of the three vector relative coordinates. 

The noninteracting form of the three-body Dirac equation for equal 
quark masses M is 

[oq �9 (2Pi - P2 - P3)  + Or2 �9 ( - P I  + 2P2 - P3)  

+ or3 �9 (--PI -- P2 + 2P3) + 3M(131 + 132 + 133)] t i t /3  = EXit (2) 

ot and 13 are the Dirac matrices, and P is the vector momentum operator. The 
subscripts denote particle label. This is the so-called Hamiltonian form. 
The hyperspherical method has been applied to this three-body Dirac equation 
(Strobel, 1986), where hyperangular averages of a diagonal central potential 
and the relativistic kinetic energy operator were evaluated. The basic idea is 
to use the chain rule of calculus to change the partial derivatives of the kinetic 
energy operator with respect to rt, etc., into partial derivatives with respect 
to the hyperradius. 

The hyperradius is defined as 

p2 = (r22 + r23 + r32t)/3 = r 2 + r 2 + r 2 _ 3R 2 (3) 

where rt, r2, and r3 are the locations of the three particles, respectively, and 
R is the location of the center of mass. r~2 is the separation of particles 1 
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and 2, etc. The hyperspherical formulation expands the three-body bound- 
state wave function into a set of terms, each of which has a hyperradial and 
a hyperangular factor. For a hypercentral potential there is only a single term 
in the expansion. The details of the hyperspherical approach can be found 
in book Morse and Feshbach (1953) or Baz and Zhukov (1970). 

A hypercentral potential will be added to this free three-body Dirac 
equation to bring about quark confinement and an exponentially decreasing 
hyperradial wave function. That such a hypercentral potential can be analyti- 
cally found for the three-body Dirac equation is the major result of this paper. 
One could just add an arbitrary three-body hypercentral potential. Instead, 
the hypercentral potential found below will be considered as the sum of three 
pairwise quark-quark potentials. These quark-quark potentials are taken as 
diagonal central potentials such that the quark-antiquark two-body system 
is confined (Stanley and Robsen, 1980) and avoids the Klein paradox (Semay 
et al., 1993). The hypercentral potential found below cannot be described as 
solely the sum of three pairwise two-body potentials. The pairwise potentials 
by themselves nearly reproduce the hyperradial potential, but a small residual 
three-body potential is also required. 

2. THEORY 

The three-fermion wave function �9 is written as 

xtt = E R(p)U(~) (4) 

where the sum in general is over various configurations. U is a product of 
the spin, flavor, and color parts of the wave function for each of the particles, 
and includes the angular momentum coupling. 1) denotes the hyperangles 
and the other spin, flavor, and color coordinates of the system. 

The unknown hyperradial dependence to be determined is contained in 
the R(p) factor, which is represented here as an eight-component vector. The 
angular momentum coupling is [Jt, J2]Ji2, j3JMz). Here Jr, J2, and J3 are the 
total angular momentum of each of the three particles; J12 is the intermediate 
coupling of the first pair. The total angular momentum of the third particle 
is coupled to Jr2 to produce J, the total angular momentum of the three-body 
system, and its z component M~. For the nucleon, J is one-half. Doing the 
hyperangular integration results in the three-body Dirac equation becoming 
a set of coupled differential equations involving derivatives with respect to 
the hyperradius. The summation over configurations is restricted here as 
follows. Each term in the summation is a given spin parity configuration. 
The only spin parity configuration considered is the (1/2+) 3. For this configura- 
tion an eight by eight matrix is obtained for the Hamiltonian operating 
on the composite three-body wave function involving the large and small 
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components for each particle. There are eight components of  the composite 
three-body Dirac equation wave function for a given configuration, denoted 
by an x subscript. Each component has a K value which is the sum of the 
orbital angular momentum for each of the three single-particle orbitals of 
that component. K depends on x, and is tabulated below. We define A(x, x') 
= K(x) + K(x ' ) .  This angular momentum coefficient varies from element to 
element in the Hamiltonian matrix. The normalization of the wave function 
is now considered. The norm for a given single configuration is 

I = f 0 5 apfRx) /r[A(x, x) + 6)/2] (5) 

Here the sum is over the eight components of the single configuration of the 
composite three-body wave function. 

After integrating over the hyperangles, the three-body Dirac equation 
is found to be a set of one-dimensional differential equations in the hyperrad- 
ius. The kinetic energy operator depends on whether it operates on a large 
or on a small component single-particle wave function (Strobel and Hughes, 
1987). The kinetic energy operator is -pKCX')D(-K(x)) .  Here the quantity D 
is defined as 

D(n) = ~/(2/3) (d/alp + n/p) (6) 

The somewhat ugly factor of J(2/3) can be eliminated through a change of 
variables by defining 

3p 2 = 2r z (7) 

In the equations that follow, r refers to the square root of 3p2/2. 

3. AN EXPONENTIAL SOLUTION FOR THE (1/2§ 3 
CONFIGURATION 

For the (1/2+) 3 configuration the K values are as follows: 

x LI L2 L3 K 

1 0 0 0 0 
2 1 0 0 1 
3 0 1 0 1 
4 1 1 0 2 
5 0 0 1 1 
6 1 0 1 2 
7 0 1 1 2 
8 1 1 1 3 
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An exponential solution for the hyperangular integrated form of [H - 
E]~ = 0 for the (1/2§ 3 configuration is found when a specific hypercentral 
potential is utilized for the case of all three particles identical. For three 
identical particles, and with each particle with the same set of quantum 
numbers, one expects the components R2, R3, and R5 to be equal, and also 
for the components R4, R6, and R7 to be equal. Then the wave function 
has only four unknown components, R l, R2, R4, and R8. The hypercentral 
interaction can vary from component to component, but for three identical 
particles, the interactions in components 2, 3, and 5 are equal. Also, the 
interaction in components 4, 6, and 7 are equal. Including a hypercentral 
interaction along the diagonal results in a 4 by 4 Hamiltonian matrix that 
operates on the four unknown components as 

I 
(3M - E + Vh~) -D(5) 0 0 -] 

D(0) (M - E + Vh~2) -D(6)/2 0 
0 2D(-1) ( - M  - E + Vh,4) -D(7)/5 
0 0 3D(-2) ( -3M - E + Vh~s) 

R2 
R4 = 0 (8) 

R8 

This matrix operates on the hyperradial components R1, R2, R4, and R8. 
Solutions of this equation are sought and found of the form 

RI = A exp(-Lr) 

R 2  = B r  exp(-Lr)  (9) 

R 4  = C r  2 exp(-Lr)  

R 8  = H r  3 exp(-Lr) 

The powers of }" for each of the components handle the dominant angular 
momentum barrier at the origin. The exponential factor for each of the 
components comes from the dipole fit to the proton form factors suggesting 
an exponential charge distribution. L is an inverse length parameter that will 
be determined from physical considerations. The component coefficients 
found for the composite wave function are 

A = I  

B = - ( E -  3M)/6 (10) 

C = (E - M)(E - 3M)/24 

H = - ( E  + M)(E - M)(E - 3M)/48 
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An exponential solution of this form is possible only when the hypercentral 
potential parameters are chosen such that 

w h e r e  

Vh,x = nxr  + k~ + m J r  

nl  = L ( E  - 3M)/6, kl = 0 
n2 = L ( E  - 3M)/8, kl = 0 
n4 = L ( E  + 3M)/10, k4 = 0 
n8 = 0 k8 = ( E +  3M), 

(II)  

m l = 0  

m 2 = - 6 L / ( E -  3 M )  

m4 = - 8 / . , / ( E  - M)  

m8 = - 6 L I ( E  + M )  

(12) 

This hypercentral potential is determined when the exponential solution is 
substituted into the four by four Hamiltonian matrix, the differentiation is 
carded out, and coefficients of like powers of r are equated. Setting the 
coefficient A to unity, we obtain the above solution and potentials. Normaliz- 
ing this configuration to unity multiplies all the component coefficients by 
a constant compared to the values quoted above. 

L is a parameter of the exponential wave function, and the hypercentral 
potential parameters depend on it. The larger L is, the more pointlike the 
system becomes. The system is confined, as the parameters nx are all nonnega- 
tive. It is interesting that the l/p coefficients are all nonpositive. This is 
reminiscent of an attractive one-gluon exchange potential contribution at 
short distances and a long-range linear confining potential at large distances. 

The contribution of each component of the wave function to the normal- 
ization varies with a relativistic parameter T, defined as 

T = ( E  - 3 M ) I ( E  + 3M) (13) 

This parameter is one in the extreme relativistic case where the quark mass M 
is negligible compared to the proton rest energy E. The relativistic parameter is 
zero in the nonrelativistic limit where the mass is one-third of the energy. 
The magnetic moment for this wave function is a monotonically increasing 
function of T for all values of L. The calculated magnetic moment, for T 
equals unity, as a function of L can be seen in Fig. 1. The maximum value 
is 2.763 nuclear magnetons for an L value of 1.38 (l/fermi). For larger values 
of L the entire system shrinks, causing the expectation value of r to decrease, 
and also the magnetic moment to decrease. For smaller values of L, although 
the system expands, as does the expectation value of r, the system becomes 
dominated by the small-small-small component of the composite wave 
function, so much so that the magnetic moment matrix element decreases. 
This element has large components of the composite wave function entering 
linearly, and these components become negligible in the small-L limit for 
zero-mass quarks. The large-large-large component of the composite wave 
function dominates the normalization for large L, as can be seen in Fig. 2. 
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Fig. 1. Calculated proton magnetic moment for zero-mass Dirac quarks versus inverse 
size parameter L, for an exponential composite t h r e e - M y  wave function. 
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Fig. 2. The RI, R2, R4, and R8 component contributions to the (!/2") 3 configuration normaliza- 
tion versus the inverse size parameter L. The curves are for E equal to the proton rest energy. 
The R2 normalization includes the equal contributions from each of the R2, R3, and R5 
components. The R4 normalization includes the equal contributions from the R4, R6, and R7 
components. Zero-mass quarks are assumed. The curves are labeled by the component x value. 

The components of the composite three-body wave function can be seen in 
Fig. 3 for the L value that maximizes the magnetic moment. The small cubed 
component dominates the normalization. 

4. PAIRWISE POTENTIALS 

The hypercentral potential found to produce an exponential hyperradial 
wave function cannot be described as solely from the sum of three pairwise 
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Fig. 3. Components of  the composite three-body exponential wave function versus r. The 
hyperradius is related as 2p 2 = 3r 2. The curves are for an inverse size parameter L of  1.38 I/ 
Fermi. The curves are labeled by the component x value. 

diagonal central potentials between identical quarks. A three-body potential 
is also needed. 

The three-body potential contribution to the hypercentral potential Vhsx 
can be restricted to the x = I large cubed component of the composite three- 
body wave function or to the x = 8 small cubed component. The former is 
done here, as the confining pairwise potentials then obtained properly avoid 
the Klein paradox (Semay et al., 1993). The corresponding quark-antiquark 
potentials do confine the two-body system. Restricting the three-body poten- 
tial to the small cubed component results in two-body potentials that suffer 
from the Klein paradox. 

The two-body central potential considered here is a central, diagonal 
interaction: 

Vi2 = SiI31 + $2132 + $131132 + V (14) 

with St, $2, S, and V being in general (Semay et  al., 1993) unknown functions 
of r~2. This is a two-body generalization of the central diagonal scalar plus 
vector one-body potential used to solve the one-body Dirac equation. This 
is still not the most general possible two-body covariant potential, as no 
nondiagonal Dirac matrices are included. The radial part of a vector potential, 
which conserves parity, angular momentum, and time reversal invariance, 
drops out of a SchrOdinger-like equation in a nonrelativistic reduction (Clark 
et al., 1982; Miller, 1975). This and simplicity are the only reasons for 
considering diagonal Dirac matrices only. In the space of the large and small 
components for two bodies (FF, GF, FG, GG), where F now refers to the 
large component, and G refers to the small component, and ordering in 
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a term refers to particle label, this two-body potential has only diagonal 
nonvanishing matrix elements. They are 

me2 -S~ + $ 2 -  S + V GF 
me3 +S~ - $2 S +  V 
me4 -S~ $ 2 + S +  V 

(15) 

The quark-quark potential radial dependence, when integrated over 
hyperangles, that can best reproduce the hypercentral potential has the form 

Wl2 = Alrl2 + Ao + Am/rl2 (16) 

This form is similar to other typical quark potentials (Nag et al., 1987; Strobel 
and Pfenninger, 1987; Burov and Shitikova, 1992). With properly chosen 
coefficients A ~, A0, and Am, the sum of three of these pairwise potentials can 
be made to nearly reproduce the hypercentral potential. The match is complete 
for components x = 2-8.  The deviation for component x = I can be attributed 
to a three-body potential. The quark mass is set to zero now, as this value 
results in the most realistic (largest) values for the model magnetic moment. 
The constant coefficient ks for the hyperradial potential implies that the 
constant coefficient for the pairwise potential is given by .fl/3 FGFF} / -  1/6 GF 

Ao = E ' [_ I I  6 (17) 

1  ̀ 1/3 GG 

A linear confining term to the pairwise potential is inferred from the 
part of the hyperradial potential Vh~ that is proportional to r. For the Air12 
term to the Wt2 pairwise potential, we have 

0.04557 GF 
FG Ai = cLE'[0.04557 (18) 

/ 

1`0.0 GG 

Here c = 9"rr/16v/2. This factor comes from the hyperangular integration of 
r12 with the result proportional to r. 

Likewise the A,,Ir~2 term of the pairwise potential is found to be 

|f-0"15979418 ~ G }  1-0 .9418  GF 
Am = 2cL/E~_ 0 (19) 

1.-015833 

The 2c coefficient appearing here comes from the hyperangular integration 
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Fig. 4. The required hyperradial potentials acting on each component of the composite three- 
body wave function. The labels 1, 2, 4, and 8 denote the component x value on which the two- 
body potential acts. The three-body potential acting only on the large cubed component is 
labeled 3. 

of l/r]2, with a result proportional to 1/r. T h e  hyperangular average of the 
sum of these three palrwise potentials Wi2, WI3, and 14123 is given as follows: 

x confinement constant Coulombic 

1 O .045LEr  E - 1.4375L/Er 
2 LEr /8  0 - 6 L / E r  

4 L E r / 1 0  0 - 8 L / E r  

8 0 E - 6 L / E r  

(20) 

The remainder of the required hyperradial potential is ascribed to a 
three-body potential of the form 

V3b = (O .12166LEr  - E + 1.4375L/Er)(I + 130(1 + 132) 

(1 + [33)/8 (21) 

Figure 4 shows these potentials as a function of r. This three-body potential, 
by itself, assists confinement. It acts only in the large cubed component of 
the wave function. It is a small part of the potential that confines the system. 
The expectation value of the three-body potential, for the case of L = 1.38 
(1/fermi) is -0 .0069 GeV. This is so small because the component where 
the three-body potential acts is such a minor component of the system normal- 
ization. The quark-quark potentials inferred from the hypercentral potential 
avoid the Klein paradox (Semay et  al.,  1993). The expectation value of the 
pairwise potentials is 0.7546 GeV. The expectation value of the kinetic energy 
of the system is 0.1905 GeV. A three-body potential may be expected (Stanley 
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and Robsen, 1980) for a three-quark system if the quark-quark potential is 
properly described by the nonlinear QCD theories. The nonlinear effects may 
be acting to prevent three pairwise potentials alone from describing the 
potentials acting in a three-quark system. 

5. CONCLUSIONS 

A hypercentral potential of the form 

Vh~x = nxr + kx + mx/r (22) 

has been found that will produce an exponentially damped solution for the 
three-body Dirac equation. For the (1/2+) 3 configuration of quarks coupled 
to a spin of 1/2, the maximum magnetic moment is found to be 2.763 nuclear 
magnetons. This is for three massless Dirac quarks. The hypercentral potential 
can be mostly reproduced by the sum of three pairwise interactions integrated 
over hyperangles. The difference is attributed to a three-body potential. This 
is expected if the quark-quark potential is a nonlinear result of interacting 
gluon exchange. The pairwise potentials deduced are similar to those used 
in quark-antiquark descriptions of mesons. The required potentials have a 
Coulomb attraction, a constant term, and a linear confining term. An exponen- 
tial wave function shape might be expected from the dipole fits to the electro- 
magnetic form factors. 
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